Local and global solvability for advection-diffusion equation on an evolving surface with a boundary

نویسندگان

چکیده

This paper considers the existence of local and global-in-time strong solutions to advection-diffusion equation with variable coefficients on an evolving surface a boundary. We apply both maximal $L^p$-in-time regularity for Hilbert space-valued functions semigroup theory construct evolution equation. Using approach our function spaces surface, we show Moreover, derive asymptotic stability solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition

Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...

متن کامل

Generalized Boundary Conditions for the Time-Fractional Advection Diffusion Equation

The different kinds of boundary conditions for standard and fractional diffusion and advection diffusion equations are analyzed. Near the interface between two phases there arises a transition region which state differs from the state of contacting media owing to the different material particle interaction conditions. Particular emphasis has been placed on the conditions of nonperfect diffusive...

متن کامل

An analytic solution for a non-local initial-boundary value problem including a partial differential equation with variable coefficients

‎This paper considers a non-local initial-boundary value problem containing a first order partial differential equation with variable coefficients‎. ‎At first‎, ‎the non-self-adjoint spectral problem is derived‎. ‎Then its adjoint problem is calculated‎. ‎After that‎, ‎for the adjoint problem the associated eigenvalues and the subsequent eigenfunctions are determined‎. ‎Finally the convergence ...

متن کامل

A Lattice Boltzmann Method for the Advection-Diffusion Equation with Neumann Boundary Conditions

In this paper, we study a lattice Boltzmann method for the advectiondiffusion equation with Neumann boundary conditions on general boundaries. A novel mass conservative scheme is introduced for implementing such boundary conditions, and is analyzed both theoretically and numerically. Second order convergence is predicted by the theoretical analysis, and numerical investigations show that the co...

متن کامل

A Bound on Mixing Efficiency for the Advection–Diffusion Equation

An upper bound on the mixing efficiency is derived for a passive scalar under the influence of advection and diffusion with a body source. For a given stirring velocity field, the mixing efficiency is measured in terms of an equivalent diffusivity, which is the molecular diffusivity that would be required to achieve the same level of fluctuations in the scalar concentration in the absence of st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis & PDE

سال: 2022

ISSN: ['2157-5045', '1948-206X']

DOI: https://doi.org/10.2140/apde.2022.15.1617